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In contrast to the normal state of conventional metals for which phonon renormalizations drop out of the
electronic density of states, we demonstrate that they remain in the case of graphene and their signature is large
and measurable. Furthermore, the electron-phonon interaction, which is fixed in conventional metals, can be
tuned over a significant range in graphene by changing the gate voltage. Indeed, a factor of 2 in magnitude
should be easily achievable. These two features allow for a normal-state spectroscopy for examining many-
body interactions, such as the electron-phonon interaction. We present a procedure to trace the magnitude of
the amplitude of the predicted phonon structures which will increase significantly with increasing doping. We
also find that the Dirac point zero in the electronic density of states can be lifted and will become quadratic
signifying the presence of many-body renormalizations in graphene.
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It is a remarkable result of many-body physics that in
electronic systems in which the density of states �DOS� is
constant on the scale of a phonon energy, electron-phonon
renormalizations entirely drop out,1,2 and no phonon signa-
tures are expected or seen. This has now changed with the
advent of graphene. Graphene was isolated only in 2004
�Refs. 3 and 4� but has since been extensively studied and
found to exhibit many unusual properties. These include a
quantum Hall effect, a minimum conductivity, a Berry phase
of � and other effects related to the chirality of its charge
carriers.5–7

In this Rapid Communication, we show how measure-
ments of the DOS in graphene offer an opportunity to obtain
detailed information on electron-phonon coupling in sharp
contrast to the case of ordinary metals. This is important as it
illustrates a strong violation of a well-established result of
many-body physics and provides unusual doping-dependent
predictions for the manifestation of the electron-phonon in-
teraction in experiments on graphene. This result arises for
two reasons. First, the charge carriers exhibit relativistic dis-
persions with quasiparticle energy ��k� linear, rather than
quadratic, in momentum �k�, �k= ��v0�k�. Here, v0 plays
the role of the velocity of light and the � gives the upper and
lower Dirac cones, respectively. At neutrality, the lower cone
is fully occupied and the upper one is empty. This dispersion
gives rise to an energy dependence of the DOS which is
linear. Second, both theory and experiment indicate that the
major coupling is to high-energy phonons of order 200
meV.8–10 Thus, an electron scattering from an initial state to
a final state through the assistance of a phonon will sample
changes in the DOS on the scale of the phonon energy, which
is significant in graphene. Another special feature is that the
number of charge carriers can be changed through charging
in a field effect device where the chemical potential ��0�,
measured with respect to the Dirac point �neutrality point�, is
proportional to the square root of the gate voltage. These
characteristics offer a rich spectroscopy for the study of pho-
non effects including their variation in �0. By contrast, in
conventional metals the electron-phonon interaction is fixed
in magnitude.

The graphene renormalized DOS N��� is given by11–14
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2. In Eq. �1�, WC is an upper cutoff on the

Dirac cones given by ���3t, with t as the nearest-neighbor
hopping parameter, and ���� is the electronic self-energy
given by12
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where 
2F�	� is the electron-phonon spectral density and
n�	� and f���� are, respectively, the Bose-Einstein and
Fermi-Dirac distribution functions at temperature T. For the
bare band case �����→0�, the chemical potential � reduces
to its noninteracting value �0 and sets the doping level. Also,
the Lorentzian form in Eq. �1� reduces to ���+�0−�� and
the DOS becomes ��+�0�.

Park et al.8 performed a full first-principles study of the
electron-phonon interaction in graphene and found that the
result could be approximated by an Einstein mode at 200
meV. In this case, the electronic self-energy, at zero tempera-
ture, is given by an analytic form with15
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where A is the area under the Einstein mode and �E its
frequency. For simplicity, we have assumed in writing Eq.
�3� that WC is larger than any other energy of interest, but in
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all numerical results presented here, this approximation was
not made. The corresponding imaginary part is −Im ����
= �A

WC
��−�E+�0�, for �E�WC−�0+�E and �A

WC
��+�E

+�0� for −�E���−WC−�0−�E. In terms of this self-
energy, the renormalized density of states is given by
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where �=−Im ���� and �̃=�−Re ����+�. For finite �,
the problem no longer has particle-hole symmetry and
Re ���=0� is not zero and provides a shift in chemical po-
tential from bare to dressed value with �=�0
+Re ���=0�.13,16 For a clean system � will vanish for
−�E��E, and Eq. �4� reduces to

N���
N0

= �̃ sgn �̃, for − �E  �  �E. �5�

In this special range, the DOS is very closely related to the
Re ����. Returning to Eq. �1�, it is important to realize that,
for infinite bands with constant DOS, the ��� factor would not
appear and the integral over � would give a constant inde-
pendent of � so that phonon renormalizations simply drop
out. Graphene is very different.

While Eq. �3� has been written for a single Einstein oscil-
lator, it nevertheless provides us with valuable insight into
the relationship between phonon structure and the real part of
the self-energy. Re ���� has singularities of the form
ln����E� at �= ��E and a third weaker logarithmic singu-
larity of the type ��+�E+�0�ln��0+�+�E� at �=−��0
+�E�. The neutrality point is special, however. For �0=0,
only two singularities remain and they are both of the weaker
kind ����E�ln����E�. In a real system there will of course
be a distribution of phonons and the self-energy of Eq. �3�
needs to be averaged over such a distribution. This will re-
duce the prominence of the expected singularities in this
quantity. In such a case it becomes useful to consider a first
derivative −d Re ���� /d�. This is shown in Fig. 1 for four
values of the chemical potential, �0=0, 150, 500, and 700
meV. The phonon distribution used in these numerical calcu-
lations was a truncated Lorentzian centered on �E
=200 meV with width �=15 meV.12,17 As expected the top
left frame exhibits only two phonon anomalies while the
three other frames have three. Also in these three cases the
anomalies at �= ��E are much more pronounced than the
ones at �=−��E+�0� and also than those in the top left
frame. In all four frames, the black dotted horizontal line was
drawn through the local minimum at �=0 and identifies the
value of the electron-phonon mass renormalization param-
eter � as we will now describe. For � small near the Fermi
energy ��=0�, Re ���� in Eq. �3� can be shown to vary as
Re �����−��+Re ���=0� and the dressed quasiparticle

energy Ek is given by the equation Ek−Re ��Ek�+�
= ��v0�k�=Ek�1+��+�0. Or Ek= ���v0�k�−�0� / �1+��
= ��v0�k−kF� / �1+��, which means that � simply renormal-
izes the bare Fermi velocity from v0 to v0

��v0 / �1+��. As
Fig. 1 shows, � grows with increasing �0 as Eq. �3� implies.
The red vertical arrow indicates the Dirac point defined by
�k�=0.

The relationship between boson structure in the self-
energy and its manifestation in the DOS is given by Eq. �4�.
Results for N��� are shown in Fig. 2. The frame �a� is for
�0=150 meV, which is smaller than �E and �b� is for �0
=500 meV ��E. The shaded yellow region is the occupied
part of the bare band which is shown as the black dotted
curve. Phonon renormalizations change the shape of the
DOS and hence the value of the chemical potential must be
altered to keep the correct number of particles. The long
black and short blue arrows point to the value of the bare and
dressed chemical potential with �−�0=Re ���=0�. Phonon
anomalies are clearly seen in the dressed curves. To empha-
size this structure an Einstein spectrum was used with �E
=200 meV so that the phonon structures fall at �= ��E,

FIG. 1. �Color online� −d Re ���� /d� vs � for a truncated
Lorentzian electron-phonon spectral density peaked around 200
meV. Curves are for �0=0, 150, 500, and 700 meV.

FIG. 2. �Color online� �a� N��� /N0 �in eV� vs � for the bare
chemical potential �0=150 meV. The solid curve gives the phonon
renormalized case and the dotted gives the bare band case. The
arrows show the bare �long� and renormalized �short� value of �.
�b� Same as for �a� but with �0=500 meV.
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one on either side of the Fermi energy. The expected singu-
larity at �=−��E+�0� is by comparison very weak and ap-
pears as a slight change in slope in Fig. 2. Two additional
features of these curves are to be noted. At the Fermi energy
��=0�, the dressed and bare DOS have exactly the same
value. In the region of the Fermi energy Eq. �5� applies and
N��� /N0= ���1+��+�0�, which differs from its bare value
only by the additional factor of �1+��. At �=0, this differ-
ence disappears and dressed and bare DOS are the same.
Phonons do not change the value of the DOS at the Fermi
level. The slope out of �=0, however, is changed by a factor
of �1+�� as can be seen in both frames of Fig. 2, and we also
note that this linear behavior persists over a considerable
energy range set by the value of the Einstein oscillator. Rec-
ognizing that the normalization for the DOS is N0�1 /v0

2,
one might naively think that the �1+�� renormalization can
be included in N��� simply by changing v0 to v0

� in N0, but
we see here that this is not correct. Only one �1+�� factor
enters and not its square. The basic reason underlying this
fact is that the coherent part of the electronic Green’s func-
tion, which defines the quasiparticles in the interacting sys-
tem, contains only 1 / �1+�� of the spectral weight. The re-
mainder � / �1+�� is found in the incoherent piece describing
phonon-assisted processes.

Phonon structure in N��� can be brought out through dif-
ferentiation. Results for dN��� /d� vs � are given in Fig. 3
as the solid blue curves, where N��� is normalized by N0.
Frame �a� is for �0=150 meV and �b� is for 500 meV. The
vertical drop where dN��� /d� goes from positive to nega-

tive is at the Dirac point of the interacting system. Compari-
son with the bare band case, the dotted black line, shows a
small shift of the position of the Dirac point between bare
and dressed case. The bare case provides a useful reference
line about which the effects of the electron-phonon interac-
tion are easily seen. Besides the phonon structures at �
= ��E ,−��E+�0�, we note that the height of the curve
above one at �=0 gives the value of � directly which in-
creases significantly with increasing value of chemical po-
tential �as shown by the red solid curve in �c��. The red
dashed line is included for comparison and gives
−d Re ���� /d�. There are some differences between these
two sets of results but we can conclude that all qualitative
features seen in the DOS curves can be seen in the Re ����.
This is not to say that the imaginary part of ���� plays no
significant role. In frame �b�, we see clearly that the jump at
the Dirac point energy is no longer vertical but exhibits some
smearing. This can be traced to the behavior about the Dirac
point in the DOS shown in Fig. 2�b�. The DOS no longer
goes to zero at this point ��d� but rather has a minimum
about which it rises as a quadratic ��−�d�2, seen in
experiment.18 We can show that for ���−�d�Z���,

N���
N0

=
2�

�
ln�WC

�
� +

�� − �d�2Z2

��
, �6�

with Z�1− �d Re ���� /d���=�d
and ��−�Im ������=�d

,
which shows the lifting of the Dirac point and its conversion
from linear to quadratic in ��−�d�. This immediately leads
to the smearing at the Dirac point noted in the blue curve of
Fig. 3�b�. In Fig. 3�c�, we plot the absolute value of the
height of the phonon structures as a function of �0 for the

2F�	� spectrum used here, a truncated Lorentzian �see in
the inset of Fig. 4, long-dashed red curve�. While the height
of the phonon peak at �=−��E+�0� hardly changes with
doping ��0� the other two peaks do, note the curve for �
=�E. We have not plotted the peak height for �=−�E as for
�0�E it is similar to the result for �=�E and for �0
��E it becomes ambiguous. These predictions provide veri-
fiable tests that observed structures are indeed due to
phonons. They also show how the increase in the DOS at the

FIG. 3. �Color online� �a� dN��� /d� vs � �solid curve� for �0

=150 meV. The dotted curve sets a baseline and is the bare band
case. The dashed, which is for comparison, is �1
−d Re ���� /d��sgn��+�d�. �b� Same as for �a� but with �0

=500 meV. �c� The absolute height of the phonon peaks at about
�=�E �solid dots� and −��0+�E� �open circles� along with the �
variation in �0, the latter indicated as the red solid curve using the
right-hand axis �indicated by the arrow�.

FIG. 4. �Color online� �a� 1− �dN��� /d�� vs � for �0=0 and
�E=155 meV �solid blue curve�. The inset on the lower right com-
pares the phonon region with the input electron-phonon spectral
density �red-dashed curve�. �b� 1−�N��� /N0��� vs � �solid blue
curve� compared with the result using the procedure of Li et al.
�long-dashed red curve�.
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Fermi surface with increasing doping is reflected in larger
coupling to the phonons.

In Fig. 4�a�, we show results for �1− �dN��� /d��� in the
specific case of �0=0 which is close to the case recently
observed in the scanning tunneling miscroscopy �STM� re-
sults of Li et al.9 To conform with those experiments, we
have used �E=155 meV, with �= ��E shown as the verti-
cal black dashed lines. The horizontal black dotted line
through the local maximum of the solid blue curve at �=0
identifies the value of � which we took to be 0.2. A second
important feature is the phonon structure which reflects the
underlying 
2F�	� spectrum used. It is shown in the inset as
the long-dashed red curve where it is scaled down and com-
pared with the absolute value of the blue curve about �
=155 meV. While there is some agreement, the two curves
have different profiles with the blue solid one much broader
than the red long-dashed one. It is clear that such a plot is
very useful in identifying phonon structure, i.e., not just the
value of the mass enhancement factor � involved but also the
position of the peaks in 
2F�	� and their strength. In experi-
ments, it may be more desirable not to differentiate. In Fig.
4�b�, we show as the solid blue curve a different quantity 1
−�N��� /N0���, where N0��� is the bare band density of
states. In this quantity, the value of the local maximum at
�=0 gives 1−�1+�=−0.095 rather than the −� of frame �a�.
We also note that the phonon structures at �= ��E are not
as sharp, however, some signature of a sharp peak in the

2F�	� used remains. The long-dashed red curve is for com-
parison and represents the quantity that was used by Li et al.9

in their analysis of their STM data. They use a definition of
an effective Fermi velocity dependent on E based on an in-
tegration of their conductance. They define vF

eff=dE /�dk
with k= � ���d

E N���d��1/2, where �d is the energy locating

the Dirac point. Like the blue solid curve, the maximum at
�=0 provides 1−�1+� and the phonon structures at �
= ��E are clearly seen. The Li et al.9 estimate of �=0.26 is
close to the 0.3 value from angle-resolved photoemission
experiments.10 Our own estimate based on the STM data is
somewhat higher but carries considerable uncertainty be-
cause of the experimental noise. An important point to note
between Figs. 4�a� and 4�b� is to reiterate that the many-body
renormalizations correct N��� by a �1+�� factor. Assuming
��� /vF

2 → ��� /vF
�2 would over estimate the correction by an

additional factor of �1+��.
In contrast to the standard expectation in wideband metals

with nearly constant DOS on the phonon energy scale, pho-
non structure does appear prominently in the DOS of
graphene and this can be used as a spectroscopy for deter-
mining electron-phonon coupling. The mass enhancement
parameter � can be extracted directly from the data around
the Fermi energy and three prominent peaks can be identified
at �= ��E and �=−��E+�0� associated with each Einstein
mode. The size of these additional structures increases with
increasing doping as does the mass enhancement �, reflect-
ing the increase in the underlying DOS. Indeed, due to the
linear DOS, the electron-phonon interaction can be tuned
over a significant range of values simply by changing the
applied gate voltage in a field effect device. The presence of
many-body renormalizations is also signaled by the lifting of
the Dirac point zero in the DOS. With these features,
graphene provides a rich laboratory in which to study in-
duced variations in many-body renormalizations.
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